Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(1): 81-109, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38157261

RESUMO

3,5-Dinitrobenzylsulfanyl tetrazoles and 1,3,4-oxadiazoles, previously identified as having high in vitro activities against both replicating and nonreplicating mycobacteria and favorable cytotoxicity and genotoxicity profiles were investigated. First we demonstrated that these compounds act in a deazaflavin-dependent nitroreduction pathway and thus require a nitro group for their activity. Second, we confirmed the necessity of both nitro groups for antimycobacterial activity through extensive structure-activity relationship studies using 32 structural types of analogues, each in a five-membered series. Only the analogues with shifted nitro groups, namely, 2,5-dinitrobenzylsulfanyl oxadiazoles and tetrazoles, maintained high antimycobacterial activity but in this case mainly as a result of DprE1 inhibition. However, these analogues also showed increased toxicity to the mammalian cell line. Thus, both nitro groups in 3,5-dinitrobenzylsulfanyl-containing antimycobacterial agents remain essential for their high efficacy, and further efforts should be directed at finding ways to address the possible toxicity and solubility issues, for example, by targeted delivery.


Assuntos
Mycobacterium tuberculosis , Animais , Oxidiazóis/farmacologia , Oxidiazóis/química , Tetrazóis/farmacologia , Tetrazóis/química , Testes de Sensibilidade Microbiana , Antituberculosos/farmacologia , Antituberculosos/química , Relação Estrutura-Atividade , Nitrorredutases , Mamíferos
2.
Future Med Chem ; 15(12): 1049-1067, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37555280

RESUMO

Background: Molecular hybridization and isostery are proven approaches in medicinal chemistry, and as such we used them to design novel compounds that we investigated as potential antimycobacterials to combat drug-resistant strains. Methods & results: Prepared N-alkyl-2-(pyrimidine-5-carbonyl)hydrazine-1-carboxamides were cyclized to N-alkyl-5-(pyrimidin-5-yl)-1,3,4-oxadiazol-2-amines along with their analogues. A total of 48 compounds were tested against Mycobacterium tuberculosis H37Rv, Mycobacterium avium and Mycobacterium kansasii, with oxadiazoles and C8-C12 alkyls being the most effective from a concentration of 2 µM. Multidrug-resistant strains were inhibited at same concentrations as the susceptible strain. For the most potent N-dodecyl-5-(pyrimidin-5-yl)-1,3,4-oxadiazol-2-amine, the mechanism of action related to cell wall biosynthesis was investigated. Conclusion: Pyrimidine-1,3,4-oxadiazole hybrids are unique antimycobacterial agents inhibiting mainly M. tuberculosis strains without cross-resistance to current drugs and are thus promising drug candidates.


Assuntos
Antibacterianos , Mycobacterium tuberculosis , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Oxidiazóis/farmacologia , Oxidiazóis/química , Pirimidinas/farmacologia , Aminas/farmacologia , Antituberculosos/farmacologia , Antituberculosos/química , Relação Estrutura-Atividade
3.
Future Med Chem ; 15(3): 255-274, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36891917

RESUMO

Background: Increasing rates of acquired resistance have justified the critical need for novel antimicrobial drugs. One viable concept is the modification of known drugs. Methods & results: 21 mafenide-based compounds were prepared via condensation reactions and screened for antimicrobial efficacy, which demonstrated promising activity against both Gram-positive and Gram-negative pathogens, pathogenic fungi and mycobacterial strains (minimum inhibitory concentrations from 3.91 µM). Importantly, they retained activity against a panel of superbugs (methicillin- and vancomycin-resistant staphylococci, enterococci, multidrug-resistant Mycobacterium tuberculosis) without any cross-resistance. Unlike mafenide, most of its imines were bactericidal. Toxicity to HepG2 cells was also investigated. Conclusion: Schiff bases were significantly more active than the parent drug, with iodinated salicylidene and 5-nitrofuran/thiophene-methylidene scaffolds being preferred in identifying the most promising drug candidates.


Assuntos
Anti-Infecciosos , Mycobacterium tuberculosis , Mafenida , Bases de Schiff/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
4.
Curr Top Med Chem ; 22(32): 2695-2706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35929626

RESUMO

BACKGROUND: There is an urgent need for new antitubercular compounds. Modification of antimycobacterial isonicotinohydrazide at hydrazide N2 provided antimycobacterial active compounds. OBJECTIVE: Combining this scaffold with various aliphatic amines that are also frequently present in antitubercular compounds, we have designed, synthesized, and evaluated twenty-three N- (cyclo)alkyl-2-(2-isonicotinoylhydrazineylidene)propanamides and their analogues as potential antimycobacterial compounds. By increasing lipophilicity, we intended to facilitate the penetration of mycobacteria's highly impermeable cell wall. METHODS: The target amides were prepared via condensation of isoniazid and pyruvic acid, followed by carbodiimide-mediated coupling with yields from 35 to 98 %. The compounds were screened against Mycobacterium tuberculosis H37Rv and two nontuberculous mycobacteria (M. avium, M. kansasii). RESULTS: All the derivatives exhibited low minimum inhibitory concentrations (MIC) from ≤0.125 and 2 µM against M. tuberculosis and nontuberculous mycobacteria, respectively. The most active molecules were substituted by a longer n-alkyl from C8 to C14. Importantly, the compounds showed comparable or even several-fold lower MIC than parent isonicotinohydrazide. Based on in silico predictions, a vast majority of the derivatives share suitable physicochemical properties and structural features for drug-likeness. CONCLUSION: Presented amides are promising antimycobacterial agents.


Assuntos
Isoniazida , Mycobacterium tuberculosis , Isoniazida/farmacologia , Isoniazida/química , Antituberculosos/química , Aminas/farmacologia , Amidas/farmacologia , Testes de Sensibilidade Microbiana
5.
Eur J Pharm Sci ; 176: 106252, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35793749

RESUMO

Novel antimycobacterial drugs are needed, especially those with dual activity against both actively growing and non-replicating subpopulations of mycobacteria. Isocitrate lyase (ICL) is one of proposed targets and this enzyme is inhibited by itaconic acid. That is why we have designed and prepared sixteen amides of itaconic acid and various anilines and amine antimicrobial drugs to evaluate them as potential inhibitors of ICL and antimycobacterial agents. N-Phenylitaconamides were prepared from itaconic anhydride and substituted anilines (yields 57-99%). They were characterized and evaluated against mycobacterial ICL and against actively growing mycobacteria (M. tuberculosis H37Rv, M. avium, two strains of M. kansasii). All derivatives showed antimycobacterial efficacy with minimum inhibitory concentrations starting from 125 µM. M. kansasii was the most susceptible species. Itaconamides derived from sulfonamides or p-aminosalicylic acid were optimal for activity against extracellular mycobacteria. ICL1 was significantly inhibited by two compounds, with 2-methylene-4-[(4-nitrophenyl)amino]-4-oxobutanoic acid 1k being the most potent (36% inhibition at 10 µM), which was also more efficient than two comparators. Molecular docking revealed its mode of binding to the enzyme. Using in silico tools, physicochemical properties and structural features for drug-likeness and gastrointestinal absorption were evaluated.


Assuntos
Isocitrato Liase , Mycobacterium tuberculosis , Compostos de Anilina , Antibacterianos/farmacologia , Isocitrato Liase/química , Isocitrato Liase/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/metabolismo
6.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34959704

RESUMO

The combination of two active scaffolds into one molecule represents a proven approach in drug design to overcome microbial drug resistance. We designed and synthesized more lipophilic esters of 2-(2-isonicotinoylhydrazineylidene)propanoic acid, obtained from antitubercular drug isoniazid, with various alcohols, phenols and thiols, including several drugs, using carbodiimide-mediated coupling. Nineteen new esters were evaluated as potential antimycobacterial agents against drug-sensitive Mycobacterium tuberculosis (Mtb.) H37Rv, Mycobacterium avium and Mycobacterium kansasii. Selected derivatives were also tested for inhibition of multidrug-resistant (MDR) Mtb., and their mechanism of action was investigated. The esters exhibited high activity against Mtb. (minimum inhibitory concentrations, MIC, from ≤0.125 µM), M. kansasii, M. avium as well as MDR strains (MIC from 0.25, 32 and 8 µM, respectively). The most active mutual derivatives were derived from 4-chloro/phenoxy-phenols, triclosan, quinolin-8-ol, naphthols and terpene alcohols. The experiments identified enoyl-acyl carrier protein reductase (InhA), and thus mycobacterial cell wall biosynthesis, as the main target of the molecules that are activated by KatG, but for some compounds can also be expected adjunctive mechanism(s). Generally, the mutual esters have also avoided cytotoxicity and are promising hits for the discovery of antimycobacterial drugs with improved properties compared to parent isoniazid.

7.
Eur J Med Chem ; 223: 113668, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198149

RESUMO

Based on successful antitubercular isoniazid scaffold we have designed its "mee-too" analogues by a combination of this drug linked with substituted anilines through pyruvic acid as a bridge. Lipophilicity important for passive diffusion through impenetrable mycobacterial cell wall was increased by halogen substitution on the aniline. We prepared twenty new 2-(2-isonicotinoylhydrazineylidene)propanamides that were assayed against susceptible Mycobacterium tuberculosis H37Rv, nontuberculous mycobacteria, and also multidrug-resistant tuberculous strains (MDR-TB). All the compounds showed excellent activity not only against Mtb. (minimum inhibitory concentrations, MIC, from ≤0.03 µM), but also against M. kansasii (MIC ≥2 µM). The most active molecules have CF3 and OCF3 substituent in the position 4 on the aniline ring. MIC against MDR-TB were from 8 µM. The most effective derivatives were used for the mechanism of action investigation. The treatment of Mtb. H37Ra with tested compounds led to decreased production of mycolic acids and the strains overproducing InhA were more resistant to them. These results confirm that studied compounds inhibit the enoyl-acyl carrier protein reductase (InhA) in mycobacteria. The compounds did not show any cytotoxic and cytostatic activity for HepG2 cells. The amides can be considered as a promising scaffold for antitubercular drug discovery having better antimicrobial properties than original isoniazid together with a significantly improved pharmaco-toxicological profile.


Assuntos
Amidas/química , Antituberculosos/síntese química , Proteínas de Bactérias/antagonistas & inibidores , Desenho de Fármacos , Oxirredutases/antagonistas & inibidores , Amidas/metabolismo , Amidas/farmacologia , Amidas/uso terapêutico , Compostos de Anilina/química , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Proteínas de Bactérias/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Oxirredutases/metabolismo , Ácido Pirúvico/química , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico
8.
Molecules ; 25(10)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408517

RESUMO

Based on the isosterism concept, we have designed and synthesized homologous N-alkyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides (from C1 to C18) as potential antimicrobial agents and enzyme inhibitors. They were obtained from 4-(trifluoromethyl)benzohydrazide by three synthetic approaches and characterized by spectral methods. The derivatives were screened for their inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) via Ellman's method. All the hydrazinecarboxamides revealed a moderate inhibition of both AChE and BuChE, with IC50 values of 27.04-106.75 µM and 58.01-277.48 µM, respectively. Some compounds exhibited lower IC50 for AChE than the clinically used drug rivastigmine. N-Tridecyl/pentadecyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides were identified as the most potent and selective inhibitors of AChE. For inhibition of BuChE, alkyl chain lengths from C5 to C7 are optimal substituents. Based on molecular docking study, the compounds may work as non-covalent inhibitors that are placed in a close proximity to the active site triad. The compounds were evaluated against Mycobacterium tuberculosis H37Rv and nontuberculous mycobacteria (M. avium, M. kansasii). Reflecting these results, we prepared additional analogues of the most active carboxamide (n-hexyl derivative 2f). N-Hexyl-5-[4-(trifluoromethyl)phenyl]-1,3,4-oxadiazol-2-amine (4) exhibited the lowest minimum inhibitory concentrations within this study (MIC ≥ 62.5 µM), however, this activity is mild. All the compounds avoided cytostatic properties on two eukaryotic cell lines (HepG2, MonoMac6).


Assuntos
Acetilcolinesterase/metabolismo , Anti-Infecciosos , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase , Imidazóis , Mycobacterium avium/crescimento & desenvolvimento , Mycobacterium kansasii/crescimento & desenvolvimento , Mycobacterium tuberculosis/crescimento & desenvolvimento , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Proteínas Ligadas por GPI/metabolismo , Células Hep G2 , Humanos , Imidazóis/síntese química , Imidazóis/química , Imidazóis/farmacologia
9.
Biomolecules ; 10(1)2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861596

RESUMO

4-aminobenzoic acid (PABA), an essential nutrient for many human pathogens, but dispensable for humans, and its derivatives have exhibited various biological activities. In this study, we combined two pharmacophores using a molecular hybridization approach: this vitamin-like molecule and various aromatic aldehydes, including salicylaldehydes and 5-nitrofurfural, via imine bond in one-step reaction. Resulting Schiff bases were screened as potential antimicrobial and cytotoxic agents. The simple chemical modification of non-toxic PABA resulted in constitution of antibacterial activity including inhibition of methicillin-resistant Staphylococcus aureus (minimum inhibitory concentrations, MIC, from 15.62 µM), moderate antimycobacterial activity (MIC ≥ 62.5 µM) and potent broad-spectrum antifungal properties (MIC of ≥ 7.81 µM). Some of the Schiff bases also exhibited notable cytotoxicity for cancer HepG2 cell line (IC50 ≥ 15.0 µM). Regarding aldehyde used for the derivatization of PABA, it is possible to tune up the particular activities and obtain derivatives with promising bioactivities.


Assuntos
Ácido 4-Aminobenzoico/farmacologia , Antibacterianos/farmacologia , Citotoxinas/farmacologia , Ácido Fólico/química , Ácido 4-Aminobenzoico/química , Antibacterianos/química , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/química , Ácido Fólico/farmacologia , Células Hep G2 , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana
10.
J Med Chem ; 62(17): 8115-8139, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31393122

RESUMO

We report herein the discovery of 3,5-dinitrophenyl 1,2,4-triazoles with excellent and selective antimycobacterial activities against Mycobacterium tuberculosis strains, including clinically isolated multidrug-resistant strains. Thorough structure-activity relationship studies of 3,5-dinitrophenyl-containing 1,2,4-triazoles and their trifluoromethyl analogues revealed the key role of the position of the 3,5-dinitrophenyl fragment in the antitubercular efficiency. Among the prepared compounds, the highest in vitro antimycobacterial activities against M. tuberculosis H37Rv and against seven clinically isolated multidrug-resistant strains of M. tuberculosis were found with S-substituted 4-alkyl-5-(3,5-dinitrophenyl)-4H-1,2,4-triazole-3-thiols and their 3-nitro-5-(trifluoromethyl)phenyl analogues. The minimum inhibitory concentrations of these compounds reached 0.03 µM, which is superior to all the current first-line anti-tuberculosis drugs. Furthermore, almost all compounds with excellent antimycobacterial activities exhibited very low in vitro cytotoxicities against two proliferating mammalian cell lines. The docking study indicated that these compounds acted as the inhibitors of decaprenylphosphoryl-ß-d-ribofuranose 2'-oxidase enzyme, which was experimentally confirmed by two independent radiolabeling experiments.


Assuntos
Oxirredutases do Álcool/antagonistas & inibidores , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Desenvolvimento de Medicamentos , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredutases do Álcool/metabolismo , Antituberculosos/síntese química , Antituberculosos/química , Proteínas de Bactérias/metabolismo , Dinitrobenzenos/síntese química , Dinitrobenzenos/química , Dinitrobenzenos/farmacologia , Relação Dose-Resposta a Droga , Hidrocarbonetos Fluorados/síntese química , Hidrocarbonetos Fluorados/química , Hidrocarbonetos Fluorados/farmacologia , Modelos Moleculares , Estrutura Molecular , Mycobacterium tuberculosis/enzimologia , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química , Triazóis/farmacologia
11.
Eur J Med Chem ; 181: 111578, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31401536

RESUMO

The research of novel antimycobacterial drugs represents a cutting-edge topic. Thirty phenolic N-monosubstituted carbamates, derivatives of salicylanilides and 4-chlorophenol, were investigated against Mycobacterium tuberculosis H37Ra, H37Rv including multidrug- and extensively drug-resistant strains, Mycobacterium avium, Mycobacterium kansasii, Mycobacterium aurum and Mycobacterium smegmatis as representatives of nontuberculous mycobacteria (NTM) and for their cytotoxic and cytostatic properties in HepG2 cells. Since salicylanilides are multi-targeting compounds, we determined also inhibition of mycobacterial isocitrate lyase, an enzyme involved in the maintenance of persistent tuberculous infection. The minimum inhibitory concentrations were from ≤0.5 µM for both drug-susceptible and resistant M. tuberculosis and from ≤0.79 µM for NTM with no cross-resistance to established drugs. The presence of halogenated salicylanilide scaffold results into an improved activity. We have verified that isocitrate lyase is not a key target, presented carbamates showed only moderate inhibitory activity (up to 18% at a concentration of 10 µM). Most of the compounds showed no cytotoxicity for HepG2 cells and some of them were without cytostatic activity. Cytotoxicity-based selectivity indexes of several carbamates for M. tuberculosis, including resistant strains, were higher than 125, thus favouring some derivatives as promising features for future development.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Carbamatos/química , Carbamatos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/síntese química , Carbamatos/síntese química , Células Hep G2 , Humanos , Isocitrato Liase/antagonistas & inibidores , Isocitrato Liase/metabolismo , Mycobacterium tuberculosis/enzimologia , Fenóis/síntese química , Fenóis/química , Fenóis/farmacologia , Salicilanilidas/síntese química , Salicilanilidas/química , Salicilanilidas/farmacologia , Tuberculose/tratamento farmacológico
12.
Molecules ; 23(10)2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30274224

RESUMO

In order to provide a more detailed view on the structure⁻antimycobacterial activity relationship (SAR) of phenylcarbamic acid derivatives containing two centers of protonation, 1-[2-[({[2-/3-(alkoxy)phenyl]amino}carbonyl)oxy]-3-(dipropylammonio)propyl]pyrrolidinium oxalates (1a⁻d)/dichlorides (1e⁻h) as well as 1-[2-[({[2-/3-(alkoxy)phenyl]amino}carbonyl)oxy]-3-(di-propylammonio)propyl]azepanium oxalates (1i⁻l)/dichlorides (1m⁻p; alkoxy = butoxy to heptyloxy) were physicochemically characterized by estimation of their surface tension (γ; Traube's stalagmometric method), electronic features (log ε; UV/Vis spectrophotometry) and lipophilic properties (log kw; isocratic RP-HPLC) as well. The experimental log kw dataset was studied together with computational logarithms of partition coefficients (log P) generated by various methods based mainly on atomic or combined atomic and fragmental principles. Similarities and differences between the experimental and in silico lipophilicity descriptors were analyzed by unscaled principal component analysis (PCA). The in vitro activity of compounds 1a⁻p was inspected against Mycobacterium tuberculosis CNCTC My 331/88 (identical with H37Rv and ATCC 2794, respectively), M. tuberculosis H37Ra ATCC 25177, M. kansasii CNCTC My 235/80 (identical with ATCC 12478), the M. kansasii 6509/96 clinical isolate, M. kansasii DSM 44162, M. avium CNCTC My 330/80 (identical with ATCC 25291), M. smegmatis ATCC 700084 and M. marinum CAMP 5644, respectively. In vitro susceptibility of the mycobacteria to reference drugs isoniazid, ethambutol, ofloxacin or ciprofloxacin was tested as well. A very unique aspect of the research was that many compounds from the set 1a⁻p were highly efficient almost against all tested mycobacteria. The most promising derivatives showed MIC values varied from 1.9 µM to 8 µM, which were lower compared to those of used standards, especially if concerning ability to fight M. tuberculosis H37Ra ATCC 25177, M. kansasii DSM 44162 or M. avium CNCTC My 330/80. Current in vitro biological assays and systematic SAR studies based on PCA approach as well as fitting procedures, which were supported by relevant statistical descriptors, proved that the compounds 1a⁻p represented a very promising molecular framework for development of 'non-traditional' but effective antimycobacterial agents.


Assuntos
Antituberculosos/síntese química , Azepinas/síntese química , Mycobacterium/efeitos dos fármacos , Oxalatos/química , Fenilcarbamatos/síntese química , Pirrolidinas/síntese química , Antituberculosos/farmacologia , Azepinas/farmacologia , Ciprofloxacina/química , Ciprofloxacina/uso terapêutico , Simulação por Computador , Desenho de Fármacos , Etambutol/química , Etambutol/uso terapêutico , Isoniazida/química , Isoniazida/uso terapêutico , Testes de Sensibilidade Microbiana , Mycobacterium avium/efeitos dos fármacos , Mycobacterium kansasii/efeitos dos fármacos , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Ofloxacino/química , Ofloxacino/uso terapêutico , Oxalatos/farmacologia , Fenilcarbamatos/farmacologia , Pirrolidinas/farmacologia , Solubilidade , Relação Estrutura-Atividade
13.
Eur J Med Chem ; 151: 824-835, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29679902

RESUMO

The development of novel drugs is essential for the treatment of tuberculosis and other mycobacterial infections in future. A series of N-alkyl-2-isonicotinoylhydrazine-1-carboxamides was synthesized from isoniazid (INH) and then cyclized to N-alkyl-5-(pyridin-4-yl)-1,3,4-oxadiazole-2-amines. All derivatives were characterised spectroscopically. The compounds were screened for their in vitro antimycobacterial activity against susceptible and multidrug-resistant Mycobacterium tuberculosis (Mtb.) and nontuberculous mycobacteria (NTM; M. avium, M. kansasii). The most active carboxamides were substituted by a short n-alkyl, their activity was comparable to INH with minimum inhibitory concentrations (MICs) against Mtb. of 0.5-2 µM. Moreover, they are non-toxic for HepG2, and some of them are highly active against INH-resistant NTM (MICs ≥4 µM). Their cyclization to 1,3,4-oxadiazoles did not increase the activity. The experimentally proved mechanism of action of 2-isonicotinoylhydrazine-1-carboxamides consists of the inhibition of enoyl-ACP reductase (InhA) in a way similar to INH, which is blocking the biosynthesis of mycolic acids. N-Dodecyl-5-(pyridin-4-yl)-1,3,4-oxadiazol-2-amine as the most efficacious oxadiazole inhibits growth of both susceptible and drug-resistant Mtb. strains with uniform MIC values of 4-8 µM with no cross-resistance to antitubercular drugs including INH. The mechanism of action is not elucidated but it is different from INH. Obtained results qualify these promising derivatives for further investigation.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Isoniazida/análogos & derivados , Isoniazida/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Oxidiazóis/química , Oxidiazóis/farmacologia , Antituberculosos/síntese química , Farmacorresistência Bacteriana , Células Hep G2 , Humanos , Isoniazida/síntese química , Testes de Sensibilidade Microbiana , Oxidiazóis/síntese química , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
14.
Molecules ; 22(12)2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29189762

RESUMO

Novel 1-(2-{3-/4-[(alkoxycarbonyl)amino]phenyl}-2-hydroxyethyl)-4-(2-fluorophenyl)-piperazin-1-ium chlorides (alkoxy = methoxy to butoxy; 8a-h) have been designed and synthesized through multistep reactions as a part of on-going research programme focused on finding new antimycobacterials. Lipophilic properties of these compounds were estimated by RP-HPLC using methanol/water mobile phases with a various volume fraction of the organic modifier. The log kw values, which were extrapolated from intercepts of a linear relationship between the logarithm of a retention factor k (log k) and volume fraction of a mobile phase modifier (ϕM), varied from 2.113 (compound 8e) to 2.930 (compound 8h) and indicated relatively high lipophilicity of these salts. Electronic properties of the molecules 8a-h were investigated by evaluation of their UV/Vis spectra. In a next phase of the research, the compounds 8a-h were in vitro screened against M. tuberculosis CNCTC My 331/88 (identical with H37Rv and ATCC 2794), M. kansasii CNCTC My 235/80 (identical with ATCC 12478), a M. kansasii 6 509/96 clinical isolate, M. avium CNCTC My 330/80 (identical with ATCC 25291) and M. avium intracellulare ATCC 13950, respectively, as well as against M. kansasii CIT11/06, M. avium subsp. paratuberculosis CIT03 and M. avium hominissuis CIT10/08 clinical isolates using isoniazid, ethambutol, ofloxacin, ciprofloxacin or pyrazinamide as reference drugs. The tested compounds 8a-h were found to be the most promising against M. tuberculosis; a MIC = 8 µM was observed for the most effective 1-(2-{4-[(butoxycarbonyl)amino]phen-ylphenyl}-2-hydroxyethyl)-4-(2-fluorophenyl)piperazin-1-ium chloride (8h). In addition, all of them showed low (insignificant) in vitro toxicity against a human monocytic leukemia THP-1 cell line, as observed LD50 values > 30 µM indicated. The structure-antimycobacterial activity relationships of the analyzed 8a-h series are also discussed.


Assuntos
Antituberculosos/síntese química , Antituberculosos/farmacologia , Piperazinas/síntese química , Piperazinas/farmacologia , Antituberculosos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Piperazinas/química , Análise Espectral , Relação Estrutura-Atividade
15.
Bioorg Med Chem Lett ; 27(23): 5185-5189, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29097168

RESUMO

Reflecting the known biological activity of isoniazid-based hydrazones, seventeen hydrazones of 4-(trifluoromethyl)benzohydrazide as their bioisosters were synthesized from various benzaldehydes and aliphatic ketones. The compounds were screened for their in vitro activity against Mycobacterium tuberculosis, nontuberculous mycobacteria (M. avium, M. kansasii), bacterial and fungal strains. The most antimicrobial potent derivatives were also investigated for their cytostatic and cytotoxic properties against three cell lines. Camphor-based molecule, 4-(trifluoromethyl)-N'-(1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene)benzohydrazide, exhibited the highest and selective inhibition of M. tuberculosis with the minimum inhibitory concentration (MIC) of 4 µM, while N'-(4-chlorobenzylidene)-4-(trifluoromethyl)benzohydrazide was found to be superior against M. kansasii (MIC = 16 µM). N'-(5-Chloro-2-hydroxybenzylidene)-4-(trifluoromethyl)benzohydrazide showed the lowest MIC values for gram-positive bacteria including methicillin-resistant Staphylococcus aureus as well as against two fungal strains of Candida glabrata and Trichophyton mentagrophytes within the range of ≤0.49-3.9 µM. The convenient substitution of benzylidene moiety at the position 4 or the presence of 5-chloro-2-hydroxybenzylidene scaffold concomitantly with a sufficient lipophilicity are essential for the noticeable antimicrobial activity. This 5-chlorosalicylidene derivative avoided any cytotoxicity on two mammalian cell cultures (HepG2, BMMΦ) up to the concentration of 100 µM, but it affected the growth of MonoMac6 cells.


Assuntos
Anti-Infecciosos/síntese química , Hidrazonas/química , Animais , Anti-Infecciosos/farmacologia , Anti-Infecciosos/toxicidade , Candida glabrata/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Hidrazonas/farmacologia , Hidrazonas/toxicidade , Camundongos , Testes de Sensibilidade Microbiana , Complexo Mycobacterium avium/efeitos dos fármacos , Mycobacterium kansasii/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos
16.
Molecules ; 22(9)2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28925956

RESUMO

The resistance among microbes has brought an urgent need for new drugs. Thus, we synthesized a series of Schiff bases derived from the sulfa drug sulfadiazine and various salicylaldehydes. The resulting 4-[(2-hydroxybenzylidene)amino]-N-(pyrimidin-2-yl)benzene-sulfonamides were characterized and evaluated against Gram-positive and Gram-negative bacteria, yeasts, moulds, Mycobacterium tuberculosis, nontuberculous mycobacteria (M. kansasii, M. avium) and their cytotoxicity was determined. Among bacteria, the genus Staphylococcus, including methicillin-resistant S. aureus, showed the highest susceptibility, with minimum inhibitory concentration values from 7.81 µM. The growth of Candida sp. and Trichophyton interdigitale was inhibited at concentrations starting from 1.95 µM. 4-[(2,5-Dihydroxybenzylidene)amino]-N-(pyrimidin-2-yl)-benzenesulfonamide was identified as the most selective Schiff base for these strains with no apparent cytotoxicity and a selectivity index higher than 16. With respect to M. tuberculosis and M. kansasii that were inhibited within the range of 8 to 250 µM, unsubstituted 4-[(2-hydroxy-benzylidene)amino]-N-(pyrimidin-2-yl)benzenesulfonamide meets the selectivity requirement. In general, dihalogenation of the salicylic moiety improved the antibacterial and antifungal activity but also increased the cytotoxicity, especially with an increasing atomic mass. Some derivatives offer more advantageous properties than the parent sulfadiazine, thus constituting promising hits for further antimicrobial drug development.


Assuntos
Aldeídos/síntese química , Anti-Infecciosos/síntese química , Pirimidinas/síntese química , Bases de Schiff/síntese química , Sulfadiazina/análogos & derivados , Sulfadiazina/síntese química , Aldeídos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Pirimidinas/farmacologia , Bases de Schiff/farmacologia , Relação Estrutura-Atividade , Sulfadiazina/farmacologia
17.
Bioorg Med Chem ; 25(20): 5468-5476, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28835350

RESUMO

In this work, four series of tertiary amine-containing derivatives of 3,5-dinitrophenyl tetrazole and oxadiazole antitubercular agents were prepared, and their in vitro antimycobacterial effects were evaluated. We found that the studied compounds showed lipophilicity-dependent antimycobacterial activity. The N-benzylpiperazine derivatives, which had the highest lipophilicity among all of the series, showed the highest in vitro antimycobacterial activities against Mycobacterium tuberculosis CNCTC My 331/88 (H37Rv), comparable to those of the first-line drugs isoniazid and rifampicin. The presence of two tertiary amines in these N-benzylpiperazine derivatives enabled us to prepare water-soluble dihydrochloride salts, overcoming the serious drawback of previously described 3,5-dinitrophenyl tetrazole and oxadiazole lead compounds. The water-soluble 3,5-dinitrophenyl tetrazole and oxadiazole antitubercular agents described in this work are good candidates for further in vitro and in vivo pharmacokinetic and pharmacodynamic studies.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Oxidiazóis/farmacologia , Tetrazóis/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Células CACO-2 , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Solubilidade , Relação Estrutura-Atividade , Tetrazóis/síntese química , Tetrazóis/química , Água/química
18.
Arch Pharm (Weinheim) ; 350(8)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28635184

RESUMO

A series of benzaldehyde and salicylaldehyde-S-benzylisothiosemicarbazones was synthesized and tested against 12 different strains of mycobacteria, Gram-positive and Gram-negative bacteria, and the significant selectivity toward mycobacteria was proved. Twenty-eight derivatives were evaluated for the inhibition of isocitrate lyase, which is a key enzyme of the glyoxylate cycle necessary for latent tuberculosis infection, and their iron-chelating properties were investigated. Two derivatives, 5-bromosalicylaldehyde-S-(4-fluorobenzyl)-isothiosemicarbazone and salicylaldehyde-S-(4-bromobenzyl)-isothiosemicarbazone, influenced the isocitrate lyase activity and caused a better inhibition at 10 µmol/L than 3-nitropropionic acid, a standard inhibitor. The compounds were also found to act as exogenous chelators of iron, which is an obligate cofactor for many mycobacterial enzymes. Due to their low cytotoxicity, together with the activity against isocitrate lyase and the ability to sequester iron ions, the compounds belong to potential antibiotics with the main effect on mycobacteria.


Assuntos
Antibacterianos/farmacologia , Antituberculosos/farmacologia , Mycobacterium/efeitos dos fármacos , Tiossemicarbazonas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antituberculosos/síntese química , Antituberculosos/química , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Isocitrato Liase/antagonistas & inibidores , Relação Estrutura-Atividade , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/química
19.
Eur J Med Chem ; 133: 152-173, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28384546

RESUMO

Tuberculosis is caused by Mycobacterium tuberculosis, an intracellular pathogen that can survive in host cells, mainly in macrophages. An increase of multidrug-resistant tuberculosis qualifies this infectious disease as a major public health problem worldwide. The cellular uptake of the antimycobacterial agents by infected host cells is limited. Our approach is to enhance the cellular uptake of the antituberculars by target cell-directed delivery using drug-peptide conjugates to achieve an increased intracellular efficacy. In this study, salicylanilide derivatives (2-hydroxy-N-phenylbenzamides) with remarkable antimycobacterial activity were conjugated to macrophage receptor specific tuftsin based peptide carriers through oxime bond directly or by insertion of a GFLG tetrapeptide spacer. We have found that the in vitro antimycobacterial activity of the salicylanilides against M. tuberculosis H37Rv is preserved in the conjugates. While the free drug was ineffective on infected macrophage model, the conjugates were active against the intracellular bacteria. The fluorescently labelled peptide carriers that were modified with different fatty acid side chains showed outstanding cellular uptake rate to the macrophage model cells. The conjugation of the salicylanilides to tuftsin based carriers reduced or abolished the in vitro cytostatic activity of the free drugs with the exception of the palmitoylated conjugates. The conjugates degraded in the presence of rat liver lysosomal homogenate leading to the formation of an oxime bond-linked salicylanilide-amino acid fragment as the smallest active metabolite.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Mycobacterium/efeitos dos fármacos , Salicilanilidas/química , Salicilanilidas/farmacologia , Tuftsina/análogos & derivados , Tuftsina/farmacologia , Animais , Antituberculosos/farmacocinética , Linhagem Celular , Humanos , Infecções por Mycobacterium/tratamento farmacológico , Mycobacterium tuberculosis/efeitos dos fármacos , Ratos , Salicilanilidas/farmacocinética , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuftsina/farmacocinética
20.
Eur J Med Chem ; 130: 419-432, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28279848

RESUMO

In this study, we described the structure-activity relationships of substituted 3,5-dinitrophenyl tetrazoles as potent antitubercular agents. These simple and readily accessible compounds possessed high in vitro antimycobacterial activities against Mycobacterium tuberculosis, including clinically isolated multidrug (MDR) and extensively drug-resistant (XDR) strains, with submicromolar minimum inhibitory concentrations (MICs). The most promising compounds showed low in vitro cytotoxicity and negligible antibacterial and antifungal activities, highlighting their highly selective antimycobacterial effects. 2-Substituted 5-(3,5-dinitrophenyl)-2H-tetrazole regioisomers, which are the dominant products of 5-(3,5-dinitrophenyl)-1H-tetrazole alkylation, showed better properties with respect to antimycobacterial activity and cytotoxicity than their 1-substituted counterparts. The 2-substituent of 5-(3,5-dinitrophenyl)-2H-tetrazole can be easily modified and can thus be used for the structure optimization of these promising antitubercular agents. The introduction of a tetrazole-5-thioalkyl moiety at position 2 of the tetrazole further increased the antimycobacterial activity. These compounds showed outstanding in vitro activity against M. tuberculosis (MIC values as low as 0.03 µM) and high activity against non-tuberculous mycobacterial strains.


Assuntos
Antituberculosos/química , Tetrazóis/farmacologia , Antituberculosos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Especificidade da Espécie , Relação Estrutura-Atividade , Tetrazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...